The Agricultural Origins of Gender Norms Economist Club – Master Thesis Event

Vladimir Zabolotskiy¹ vladimir.zabolotski2@unibo.it Ekaterina Borisova² eborisova@hse.ru Koen Schoors³ koen.schoors@ugent.be

¹University of Bologna ²Higher School of Economics

³Ghent University

May 10, 2021

The past is latent, is submerged, but still there, capable of rising to the surface once the later imprinting unfortunately – and against ordinary experience – vanished. The man contains – not the boy – but earlier men.

Philip K. Dick, Ubik

- We use genetic data at population level to construct a proxy of agricultural ancestry
 - This version focuses on agricultural ancestry only
 - No effect of language on gender found in older version
- No direct effect of genes on norms is implied
- The proxy for agricultural ancestry tracks how widespread sedentary agriculture was and how long it was practiced
- Higher agricultural ancestry → lower female participation in labor market and politics & male-favoring gender norms
- Results robust to variety of controls and alternative measures of agricultural ancestry (other genetic data)

< □ > < □ > < □ > < □ > < □ >

Introduction

- Gender inequality key in research and policy agendas
- Female participation in political and economic life is still stunted, formally and informally
- Female underrepresentation in societal functions has adverse economic effects:
 - Income inequality (Gay et al. 2018),
 - Economic slowdown (Klasen 2018),
 - Financial instability (Sahay 2018).
- Male-favoring gender norms
 - Propagate gender inequality in general,
 - Drive women out of economic and political life in particular

Female Labor Force Participation

Female LF Participation in 2000

90

7-	I	1						1
∠a	DO	IO I	s	KΙ	v.	eı	: a	L

May 10, 2021 5/23

< E

Definition 1

Gender norms are standards and expectations to which women and men generally conform, within a range that defines a particular society, culture and community at that point in time

- Gender norms vary across countries and cultures and are linked to the variation in gender inequality
- Why does this variation appear?

Gender norms and labor specialization

- Women used to be less effective at physically demanding activities, resulting in a gender-based division of labor
- Women came to be seen as less suited for the type of out-of-household labor requiring physical strength
 - Oil production (Ross 2008),
 - Warfare involvement (Whyte 1978),
 - Agriculture (Alesina et al. 2013, Hansen 2015).

Agricultural ancestry and gender norms

- Sedentary agricultural practices conducive to emergence of gender-based labor specialization (Boserup 1970)
 - Adoption of the plough drove women out of the labor force (Alesina et al. 2013)
 - Other physically demanding agricultural activities (herding) contributed to exclusion of women from the labor force
 - Longer history of such division results in more strict and rigid gender norms (Hansen 2015)
- These norms were even internalized in the language and culture of sedentary societies (Galor et al. 2018)
- Societies with more gendered languages are more discriminating towards women (Gay et al. 2013)
- Our older results suggest that the effect of language becomes insignificant once we account for agricultural ancestry

(日)

Haplogroups and the spread of agriculture

- The spread of agriculture ~ migrations of Neolithic farmers and herders from Africa and the Fertile Crescent (Haak 2010, Balaresque et al. 2010, Arroyo-Pardo 2014)
- Many haplogroups appeared at the same place and time where the Neolithic revolution started
- Certain genetic markers Y-DNA haplogroups enable us to track the ancestral history of a region or a person
- Regions where these haplogroups are more common
 - were more exposed to Neolithic migrations
 - thus more exposed to the adoption of agriculture
 - thus more exposed to the corresponding gender norms.

< □ > < □ > < □ > < □ > < □ > < □ >

Haplogroups and the spread of agriculture

Definition 2 (International Society of Genetic Genealogy)

A Y-DNA (*mtDNA*) haplogroup (Hg) is a sustainable combination of genetic mutations that are inherited unchanged from father (mother) to son (daughter)

- Y-DNA Hgs less dispersed geographically due to mostly patrilineal inheritance of property in Neolithic societies
- Major Neolithic Hgs can be divided into two groups based on the features of Neolithic sites where they were found (Lazaridis et al. 2013, Gignoux et al. 2011):
 - Agricultural Hgs: J1, J2, E1b1b, G, T, and I2a
 - Hunting-Gathering Hgs: Q, R1b, R1a, I2b, and I1
- Generally, agricultural ancestry is more common in regions with higher frequencies of agricultural Hgs

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Proposed mechanism

- Parents pass not only their genes (*nature*) but their values as well (*nurture*)
- Neolithic farmers/herders were more likely to pass gender-biased norms and values than hunter-gatherers
- Therefore, a bearer of the agricultural Y-DNA Hgs is more likely to have biased attitudes towards women
- These Hgs still reflect the ancestral way of life of modern populations.
- No direct effect of genes on norms implied!

Hypothesis 1

Countries and regions with more spread agricultural ancestry have lower female agency, and individuals from these regions are more likely to exhibit gender-biased attitudes and to have male-favoring gender norms

< □ > < □ > < □ > < □ > < □ >

Data and Methodology

- The data contain frequencies of major Neolithic Hgs for more than 100 countries (Family Tree DNA Project)
- Country-level OLS:

 $y_{c} = \beta A gricultural ancestry_{c} + X_{c}\Gamma_{c} + \varepsilon_{c},$

Individual-level OLS:

 $y_{i,c} = \beta A gricultural ancestry_{c} + X_{i}\Gamma_{i} + X_{c}\Gamma_{c} + \varepsilon_{i};$

- Agricultural ancestry_c = first principal component of Hgs' frequencies in country c, standardized and multiplied by -1
- Higher values of *Agricultural ancestry_c* correspond to the agricultural Hgs being more frequent within a country

(日)

Agricultural ancestry

Table 1. Agricultural ancestry correlation with major Neolithic Hgs

Agr. anc.								
Hunting	Hunting-gathering Hgs:							
11	-0.45***							
l2b	-0.31***							
R1a	-0.14							
R1b	-0.46***							
Q	-0.13							
Agricultu	ural Hgs:							
l2a	-0.08							
J1	0.66***							
J2	0.60***							
G	0.36***							
E1b1b	0.56***							
Т	0.67***							

Agricultural ancestry

FTDNA Agricultural Ancestry

May 10, 2021 15/23

크

Results Country level

(a) Share of women in parliament

Agricultural ancestry and FLFP

Countries with more than 50 person tested

(b) Female labor force participation

Za	bol	lo	tsk	iv	et	al	
				· /			

Agricultural Ancestry

æ

Results

Country-level

	% Women	in Parliament	Female Lat	male Labor Participation			
Historical and Contemporary controls		X_c^H, X_c^C					
Only constant	-5.84^{***}	(1.39)	-8.06^{***}	(1.35)			
Only continent FE	-4.45^{***}	(1.52)	-9.65^{***}	(1.78)			
Political complexity	-4.29^{***}	(1.46)	-9.48^{***}	(1.71)			
Agr. suitability and crop yield	-4.56^{***}	(1.44)	-8.92^{***}	(1.88)			
Tropical climate	-4.23^{***}	(1.45)	-8.09^{***}	(1.84)			
$ln(GDP_{PC})$ and $ln(GDP_{PC})^2$	-4.72^{***}	(1.12)	-8.12^{***}	(1.54)			
Communist past	-3.99^{***}	(1.45)	-9.84^{***}	(1.51)			
Religion	-2.36^{*}	(1.30)	-5.07^{***}	(1.70)			
All X_c^H , X_c^C	-5.39^{**}	(2.04)	-4.13^{**}	(1.90)			
Geo-climatic controls X ^G _c							
Terrain slope	-5.43^{**}	(2.41)	-3.98^{**}	(1.79)			
Soil depth	-5.07^{**}	(2.40)	-2.95	(1.92)			
Average temperature	-5.23^{**}	(2.05)	-3.90^{**}	(1.89)			
Average precipitation	-5.85^{**}	(2.18)	-4.38^{*}	(2.22)			
All geo-climatic X_c^G	-5.59^{**}	(2.23)	-3.86^{*}	(2.00)			
All geo-climatic X ^G _c squared	-5.53^{**}	(2.22)	-3.63^{*}	(1.95)			
All geo-climatic X_c^G interactions	-4.37	(2.48)	-3.94^{*}	(2.09)			
Alternative controls X_c^A		All X ^H _c , λ	K ^C included				
Oil production _{PC}	-5.45^{***}	(2.18)	-5.21^{**}	(2.40)			
Years civil conflict	-5.50^{***}	(2.17)	-4.83^{**}	(2.54)			
Years interstate conflict	-5.77^{***}	(2.06)	-4.92^{**}	(2.41)			
Trade GDP	-5.79^{***}	(2.02)	-4.81^{**}	(2.38)			
<i>Note:</i> log-weighted OLS. * $p < 0.1$, ** p	$< 0.05,^{***} p$	< 0.01	• • • • • • • • • • • • • • • • • • •	₽ × < E > < E >			
bolotskiy et al.	Agricultural A	ncestry		May 10, 2			

17/23

ъ

Results

Individual-level (WVS/EVS data)

	Men hav a iob tha	ve more right to an women (v/n)	Female employment (v/n)		
Individual X ^C _i	,	All X_c^H , X_c^C in	cluded		
Only year FE and continent FE	0.10***	(0.02)	-0.12^{***}	(0.03)	
Only X_{C}^{H}, X_{C}^{C} and FEs	0.07^{**}	(0.01)	-0.11^{***}	(0.03)	
Age, age ²	0.07^{***}	(0.01)	-0.11^{***}	(0.03)	
Marital status	0.07^{***}	(0.01)	-0.10^{***}	(0.03)	
Education	0.07^{***}	(0.01)	-0.11^{***}	(0.03)	
Income	0.08^{***}	(0.02)	-0.10^{***}	(0.03)	
Religion	0.07*** (0.02)		-0.10^{***}	(0.03)	
All X ^C	0.07^{***}	(0.02)	-0.10^{***}	(0.03)	
Geo-climatic controls X_c^G	All X_c^H , X_c^C , X_i^C included				
Terrain slope	0.08***	(0.02)	-0.10^{***}	(0.03)	
Soil depth	0.08^{***}	(0.02)	-0.07^{**}	(0.03)	
Average temperature	0.08^{***}	(0.02)	-0.10^{***}	(0.03)	
Average precipitation	0.04^{**}	(0.02)	-0.07^{**}	(0.03)	
All geo-climatic X ^G	0.05^{**}	(0.02)	-0.06^{*}	(0.03)	
All geo-climatic X ^G squared	0.07^{***}	(0.02)	-0.06^{**}	(0.03)	
All geo-climatic X_c^{G} interactions	0.07^{***}	(0.02)	-0.06	(0.03)	
Alternative controls X_c^A	All X_c^H , X_c^C included				
Oil production _{PC}	0.07***	(0.02)	-0.10^{***}	(0.03)	
Years civil conflict	0.07^{***}	(0.02)	-0.10^{***}	(0.02)	
Years interstate conflict	0.07^{***}	(0.02)	-0.10^{**}	(0.03)	
Trade GDP	0.07^{***}	(0.02)	-0.10^{***}	(0.03)	

Note: log-weighted OLS. *p < 0.1, **p < 0.05,*** p < 0.01

Zabolotskiy et al.

May 10, 2021 18/23

◆□ → ◆圖 → ◆臣 → ◆臣 → ○臣

- Similar results with weighted and unweighed OLS
- Similar results with alternative datasets and measures:
 - Eupedia and NevGen haplogroup data,
 - Early European farmers' admixture (Lazaridis et al. 2013).
- The results for male-favoring gender norms hold in a subsample of second-generation migrants
- Machine-learning CART algorithm selects agricultural ancestry among the most important variables

< □ > < □ > < □ > < □ > < □ >

Results

Second-generation migrants (ESS data)

	Men hav	e more right to	Female				
	a job tha	an women (y/n)	employment (y/n)				
Agricultural ancestry	Father's country of birth						
Individual X_i^C		All X_c^H , X_c^C in	cluded				
Only year FE and continent FE	0.03^{**}	(0.01)	-0.03^{**}	(0.01)			
Only X_c^H, X_c^C and FEs	0.05^{***}	(0.01)	-0.03	(0.02)			
Age, age ²	0.05^{***}	(0.01)	-0.03^{**}	(0.01)			
Marital status	0.05^{***}	(0.01)	-0.02	(0.02)			
Education	0.04^{***}	(0.01)	-0.02	(0.02)			
Income	0.04^{**}	(0.01)	-0.03^{*}	(0.02)			
Religion	0.05^{***}	(0.02)	-0.01	(0.01)			
All X ^C _i	0.03^{*}	(0.02)	-0.01	(0.01)			
Agricultural ancestry	Mother's country of birth						
Individual X_i^C	All X_c^H , X_c^C included						
Only year FE and continent FE	0.04^{***}	(0.01)	-0.03^{**}	(0.01)			
Only X_c^H, X_c^C and FEs	0.07^{***}	(0.01)	-0.02	(0.02)			
Age, age ²	0.07^{***}	(0.01)	-0.03^{*}	(0.01)			
Marital status	0.07^{***}	(0.01)	-0.02	(0.02)			
Education	0.06^{***}	(0.01)	-0.01	(0.02)			
Income	0.08^{***}	(0.01)	-0.03	(0.02)			
Religion	0.07^{***}	(0.02)	-0.01	(0.02)			
All X_i^C	0.06^{***}	(0.02)	0.00	(0.02)			

Note: log-weighted OLS. *p < 0.1, **p < 0.05,***p < 0.01

Zabolotskiy et al.

Men have more right to a job CART

(b) Variable importance

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

(a) Jobs are scarce	CART
---------------------	------

★ ▲ ■ ▶ ■ シへの May 10, 2021 21/23

Results CART Trees

(a) Female employment CART

(b) Variable importance

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト

Za	bo	lot	sł	κiγ	et	al

Agricultural Ancestry

Variable name

May 10, 2021 22/23

э

Thank you for your attention!

The Agricultural Origins of Gender Norms

Vladimir Zabolotskiy¹ vladimir.zabolotski2@unibo.it Ekaterina Borisova² eborisova@hse.ru Koen Schoors³ koen.schoors@ugent.be

¹University of Bologna ²Higher School of Economics

³Ghent University

May 10, 2021

Za	bo	lot	sk	iv	et	al	
				~			

Agricultural Ancestry

May 10, 2021 23/23

4 1 1 1 4 1